ANSWERS - STUDY GUIDE – Unit Test: Atoms, Structure of Matter & Phase Changes

Atom - the "building block" of matter – what everything is MADE of

- In the Nucleus: •
 - Proton: has a __POSITIVE___ charge and
 - **Neutron**: has _NO____ charge
- Surrounding the nucleus:
 - Electron: has a __NEGATIVE____ charge

The Periodic table: elements are listed in order of Atomic NUMBER = number of **____PROTONS____**, which is what makes an element what it is.

How many Periods are on the Periodic Table? ____7___

How many Groups are on the Periodic Table? _____18

Mass number = total number of **PROTONS** and **NEUTRONS** in the nucleus of atoms

*Fill out the blanks below for what each letter means for APE MAN:

A = P = E: ATOMIC #_ = PROTONS = ELECTRONS M – A = N: MASS # - ATOMIC # = NEUTRONS

*Use APE MAN to solve for the number of subatomic particles for Aluminum:

Aluminium 13 AIII 26.082	Atomic # =13 Mass # =27 # of Protons =13 # of Electrons =13 # of Neutrons = (*show your work)	27 - 13 = 14
20.902	DRAW a Bohr Model of an atom of Aluminum. **Include protons, neutrons, and electrons, AND show the charges of each particle.	<u>DRAW</u> a Lewis Structure Dot Diagram for the element Aluminum.
	$\frac{P = +}{N = 0}$ $\frac{E = -}{2}$	• Al •

<u>Matter</u> - anything that has <u>MASS</u> and takes up <u>SPACE</u>

Kinetic Theory describes how MOLECULES / ATOMS behave $(*Circle the correct answers) \rightarrow$ As the state changes from lower energy to higher energy the particles move (*faster OR*) slower) and move (farther apart OR closer together).

Particles of a **SOLID** are locked in place vibrating, they don't have much energy but have a lot of attraction. Particles of a LIQUID slide around each other, have more energy & less attraction to each other than solids. Particles of a gas have the most **ENERGY** and the least **ATTRACTION** .

For each state / phase of matter, describe the particle movement, energy level and particle attraction.

<u>State (phase)</u>	Description of particles	Energy level	Particle attraction
<u>solid</u>	very close together and vibrate	<u>lowest</u>	<u>most / a lot</u>
<u>tiquid</u>	not as close as solids, move around each othe	<u>more</u>	less
gas	<u>far apart, as far as they can go, and fast</u>	<u>even more</u>	<u>even less</u>
<u>plasma</u>	super fast and excited, they glow / light up	<u>most!</u>	<u>Least</u>

Matter changes from one state to another (phase change)

Describe the <u>relationship</u> between energy, temperature, and particle movement (*molecular motion*). **Be able to describe this relationship as heat energy is being absorbed OR released. <u>As heat energy is added, particles move faster and farther apart, and temperature rises.</u>

As heat energy is removed, particles move slower, and get closer together, and temperature lowers.